02 – AUTOMATED ELECTRON DIFFRACTION TOMOGRAPHY ON NANOANATASE AND GOYAZITE FROM CLAY COVER OF BAUXITE DEPOSITS IN THE AMAZON

Ano 09 (2022) – Número 01 Artigos

 10.31419/ISSN.2594-942X.v92022i1a2HMP

 

 

Yaşar Krysiak1,2 Marcondes Lima da Costa3*, Herbert Pöllmann4, Jürgen Göske5 ,Ute Kolb1,2

1Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, D55128 Mainz, Germany, krysiak@uni-mainz.de

2Department of Materials and Geoscience, Technische Universität Darmstadt, Petersenstrasse 23, Darmstadt 64287, Germany

3Universidade Federal do Para, Belém, Pará, Brazil, marcondeslc@gmail.com

4Department of Mineralogy and Geochemistry, Martin-Luther-University of Halle-Wittenberg, Mineralogy, Von Seckendorff-Platz 3, D-06120 Halle (Saale), Germany, in memoriam

5Zentrum für Werkstoffanalytik Lauf GmbH (ZWL), Hardtstraße 39 b, D-91207 Lauf a. d. Pegnitz, Germany

*Corresponding author.

# In memoriam to Prof. Dr.Dr. Herbert Pöllmann (*30.06.1956 – +5.05.2022)

This article was an initiative of M.L. Costa forwarded it in the form of a basic text to H. Pöllmann in October 2014. Soon after, he found it convenient for Y. Krysiak and U. Kolb to participate, aiming at detailed crystallochemical studies of anatase. In view of Y. Krysiak’s significant contribution, I recommended that he be the first author, who has readily accepted. The then complete and revised manuscript was submitted to the journal Mineralogy and Petrology in 2019 and was rejected in June of that year. Possible referral to another journal was discussed, but there was not much interest from those involved and since the last message exchanged between M.L. Costa and H. Pöllmann on 11.26.2019 about this subject, the manuscript was paralyzed. The Covid-19 pandemic followed and shortly after its “end” in first months of 2022, suddenly, Herbert Pöllmann died on May 5, 2022. It was a blow in all aspects for family, friends, and collaborators. M.L.Costa then decided, in one of the tributes to be paid to H. Pöllmann, to publish this article in BOMGEAM, considering that there is no objection from the other authors, since they approved its submission to Mineralogy and Petrology.  The corrections recommended by the two anonymous reviewers were incorporated, except for the execution of new analyses. We are all very grateful to them. More detailed information on the correspondence exchanged between M.L. Costa and other authors, especially H. Pöllmann on the elaboration of the article until its submission and rejection by the journal, are included as an appendix in this article published in BOMGEAM.  (Notes by M.L. Costa).

 

ABSTRACT

Since naturally occurring minerals typically have particle sizes from microns to several nanometers, their investigation, from sampling to individual particle analysis, is a challenging task. This work reports the detection of anatase, which occurs mainly in tropical soils and upon weathering in laterite. Little knowledge of this omnipresent accessory nanomineral, showing strong affinity to the soil formation processes and lateritic profiles is presently available. In bauxites the nano-anatase crystal morphology have not been reported yet. The samples were collected in a bauxite mine south of the Amazon (Juruti, Brazil). The chemical enrichment of anatase was carried out with H2TiF6 and the resulting powders could be characterized with SEM, XRPD and EDX. Subsequently, transmission electron microscopy (TEM) was used to analyze the chemical composition of individual anatase particles by EDX and the unique method of automated electron diffraction tomography (ADT), which probes the reciprocal space of individual nanoparticles. Associated with anatase, crandallite mineral group was also detected.

Keywords: kaolinite; iron oxyhydroxides; gorceixite; goyazite; Juruti.

 

INTRODUCTION

Anatase is a common mineral found in soils, mainly in tropical soils and Cenozoic lateritic formations, in concentrations which are usually between 1 and 4%. However, its isolation and characterization in these materials are virtually unknown, identified only by XRD. This method has proven to be efficient without raising discussion, and thus in recent years acceptance consolidated, that in fact the anatase in these materials is an almost ubiquitous mineral. Even so, size and morphology of crystals and / or grains in these materials are unknown or were not disclosed. On the other side, anatase is a mineral of wide use in industry (optical devices, sensors, catalysts and photocatalysts water splitting to generate hydrogen), for treatment of polluted water (Hannoar & Sorrell, 2011), as valuable pigment and opacifier (Brown & Clark, 2013) for a broad range of application in ceramics, paints, plastic goods, inks and papers (Matteucci et al., 2004), and in preventing biodeterioration of mortar from historic buildings (Fonseca et al., 2010). Anatase is subject of deep research in recent years. There have been employed various methods for the synthesis of titanium oxides, including sol-gel, microemulsions, or micelles reverse, and hydrothermal synthesis (Cenovar et al., 2012), or the synthesis by sol-gel method using titanium tetraisopropoxide (TTIP) giving rise to the precursor of anatase. The industrial material anatase occurs at nanoscale crystals, generally from 5 to 10 nm, with semi-conducting behavior (Reddy et al., 2002), however most commercial anatase rich materials range in crystal size from 35 to 40 nm (Reddy et al., 2002). Whereas solid solution of crandallite-goyazite can be found in soils and lateritic profiles, the single endmember goyazite has not been proven yet. Crandallite-goyazite solid solutions occur as main mineral or associated with supergeneous minerals like gibbsite, hematite, goethite and kaolinite in several lateritic deposits in Senegal and in the Amazon region, where they can form ore deposits and are already mined (Costa et al.,2016).  The detection of goyazite mineral as described in the present paper supports its formation also in these kinds of lateritic deposits. Due to its low concentration, it can only be found by using an enrichment technology. Some minerals of this group which can be seen macroscopically even may also contain REE (Poellmann et al. 2002).

The Amazon under warm and humid tropical climate since the Mesozoic-Cenozoic injunction, with some semi-arid pulses during this period, has in its surface wide distribution soils originated in these weather conditions, with latosols and podzols domain, yellow to red, usually formed by kaolinite, quartz, hematite, goethite, sometimes gibbsite and anatase, the last one always as an accessory. The abundance of these minerals is lithodependent, including the anatase. These soils have overlain complete lateritic formations, emphatically those with bauxites, which also has wide distribution in the region. The mineralogy resembles the soil generally, although they may carry distinct types of ores (Fe, Mn, Al, Ni, P, Au, Cr, etc.). Anatase is present throughout the profile and gradually concentrates from base to its top, if derived from homogeneous rock and its content ranges from 0.8 to 8%, usually between 1.0 and 3.0%.

Anatase is usually identified only by XRD, and according to this method, is ubiquitous in all these soils and lateritic formations. Isolated or observed anatase crystals or grains have not been detected in these formations.  Probably due to limitations of the methods of optical microscopy and scanning electron microscope and also the difficulty of isolating it physically, since the crystals are too small. Some research related to the study of heavy minerals also failed to observe anatase except isolated grains and rare crystals, which are neither lateritic nor pedogenic in origin. Those apparently millimetric to centimetric crystalline aggregates derived from the alteration of titanomagnetites and perovskite linked to alkaline ultramafic and carbonatitic rocks. Recent studies on the classic cover of lateritic bauxites formations of the Amazon, represented relative thick kaolinite clay package called Belterra Clay (Kotschoubey et al 1984, 1994, 1997; Horbe & Costa 1997 and 1999). It was found that this cover keeps the same strong mineralogical and chemical relationship with these bauxites, especially about anatase.

This clay cover is comparable to regional latosols (Truckenbrodt & Kotschoubey 1981 Truckenbrodt et al 1991; Lucas et al 1993; Beauvais & Tardy, 1993; and Tardy 1993; Horbe 1995; Horbe & Costa 2005) and occurs either as in situ or allochthonous deposit,  formed by mud flow or flood sheet under arid climate trend (Truckenbrodt & Kotschoubey, 1981); colluvial deposition (Grubb, 1979); or simply yellow latosols (Kotschoubey & Duarte, 1994; Horbe & Costa, 1997, 1999, 2005) derived from bauxite and ferruginous crusts, perhaps the underlying saprolite (Kronberg, 1982;) by tropical weathering; or as a product of termite activity moving saprolite material to the surface (Truckenbrodt et al., 1991). For Bardossy & Aleva (1989) this would be a dealuminization of the top of a past bauxitic crust; or geochemical differentiation under tropical rainforest by silica intake through biological activity (Lucas et al. (1993). In Paragominas and Rondon do Pará thickness of this clay cover can exceed 25m, but usually it is between 6 and 10 m. In Juruti, in the lower Amazon, the thickness can also reach 17 m. In Oriximiná / Porto Trombetas, also in the Lower Amazon, it also reaches up to ten meters thick (figure 1). This cover extends from center through eastern Amazonia. The discussion of its origin has given rise to extravagant ideas, especially at a time when the Amazon region is the cynosure of the world concerned with environmental problems and rain forest. The Naturenews online (2010) publication defended the idea, that the Belterra Clay was aerosols originated in Bodélé depression by the lake Chad, Central Africa, in the form of plumes over the Atlantic Ocean settling in the Amazon. The conclusion was that such dust would be responsible for certain fertility in Amazonian soils, which are generally of low fertility, due to the intense tropical weathering.

Considering the previous aspects, little knowledge of this omnipresent accessory mineral, showing strong affinity to the soil formation processes and lateritic profiles, anatase was chemically extracted and then chemically and mineralogically characterized using different methods and its structure refined.

Figure 1: The most important deposits of lateritic bauxites (blue circles) with thick clayey cover (Belterra Clay) in Amazon region including Juruti bauxite mine (indicated by the arrow), where the investigated materials were collected. Modified after Bizzi et al. (2003).

MATERIALS AND METHODS

Samples

The samples were collected in the clay cover (10m in thickness) of the bauxites mine in Juruti, in the Lower Amazon (figure 1). For the extraction of anatase two samples COB 1 and COB 2, collected close to the ground surface, were selected (Table 1). These clays are yellow to ochreous, in color, consisting of kaolinite (80 weight %), Al-goethite, gibbsite, quartz and anatase (Table 1). The SiO2 and Al2O3 contents (Table 1) approaching the stoichiometric ratio of kaolinite and shows it is a high alumina clay (ca. 34%) and TiO2 contents (2.9%) is almost twice those in bauxites and its underlying mottling clay. The remaining chemical element concentrations and chemical data show the reasons clays have strong affinity with the underlying bauxite and mottled horizon, as suggested also by mineralogy.

 

Table 1 – Chemical composition, chemical ratios, and mineralogy (XRD) of the two samples from Belterra Clay compared to bauxite and mottled clay horizons, at Juruti Bauxite Deposit, modified after Costa et al. (2014). xxx: very frequent; xx: frequent; x: less frequent (< 5 %); -: not detected.

Chemistry

mineral components

COB 1

1.5m

COB 2

3.5m

BAUXITE MOTTLED CLAY
SiO2  Wt .% 36.37 37.48 7.39 24.88
TiO2 Wt .% 2.93 2.92 1.90 1.93
Al2O3 Wt .% 34.1 34.75 44.97 40.26
Fe2O3 Wt .% 8.97 8.75 23.08 14.69
P2O5 Wt .% 0.04 0.04 0.02 0.02
LOI Wt .% 17.4 15.8 22.6 18.2
TOTAL 99.81 99.74 99.96 99.98
Zr ppm 1065.8 1097.6 381.4 308.8
Hf ppm 30.0 30.6 10.9 9.3
Nb ppm 71.1 70.2 45.6 45.1
Ta ppm 4.9 4.8 3.0 3.0
Zr/Hf 35.5 35.9 35.0 33.2
Nb/Ta 14.5 14.6 15.2 15.0
TiO2/Al2O3 x 10 0.85 0.84 0.42 0.48
TiO2/Zr x 103 2.75 2.66 4.98 6.25
TiO2/Nb x 102 4.12 4.16 4.17 4.28
Kaolinite xxx xxx x xx
Gibbsite x x xxx x
Quartz x x x xx
Al-goethite xx xx x
Hematite x x xx x
Anatase x x x x

 

Anatase extraction

For the extraction of anatase a method proposed by Sayin & Jackson (1975) was used. By this method the samples were treated with H2TiF6 acid which chemically dissolves the kaolinite and other phyllosilicates most soils and sediments and concentrates the minerals anatase and rutile and zircon as the residue.

To produce H2TiF6 – acid 200 ml of 49% HF and 90 g of high-purity TiO2 were mixed to get the following reaction:

6HF.aq + TiO2 ↔ H2TiF6.aq + 2H2 (Sayin & Jackson. 1975).

The titanium concentration of the solution was measured afterwards.

30 ml of H2TiF6 was added to a polyethylene tube containing 1 g of the sample, keeping it tightly closed. The tube is then placed in a water bath at 45 ° C for two days and periodically shaken every 5 hours. The residue obtained, was washed 3 times with 30 ml of 0.1 N HCl for 5 minutes, centrifugated, washed again with 0.1 N HCl for 10 minutes under centrifugal and finally washed 5 times with deionized water. Subsequently, iron oxyhydroxides were eliminated following various methods based on the clay content of each sample. In samples with little clay iron oxyhydroxides are eliminated with 40 ml of HCl 6N in water bath for 3 hours at 80 ° C. The residues are washed with deionized water to remove residual HCl. Finally, the product was dried at 40 ° C for 24h. This procedure leads to a concentration of anatase and other heavy minerals. Moreover, samples rich in clay minerals were treated with dithionite-citrate-bicarbonate (DCB) according to the method proposed by Mehra and Jackson (1960), and then the anatase /heavy mineral concentrate was obtained.

Evaluation of anatase extraction by XRD and SEM / EDX

To evaluate the success of extraction procedures and thus the enrichment of anatase, the concentrates were subjected to analysis by XRD and scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM/EDX) both Geociences Institute of Federal University of Pará, Brazil and ZWL (Zentrum für Werkstoffanalytik Lauf, Germany. Considering the small amount of each concentrate, XRD analyzes were performed using the micro preparation techniques. At Geociences Institute these analyzes were based on X-ray powder diffraction (XRD) using a PANalytical X’PERT PRO MPD (PW 3040/60) X-ray diffractometer with PW 3050/60 (Theta / Theta) goniometer and PW3373 / 00 ceramic X-ray tube with a Cu anode (Ka = 1.540598 Ǻ) and long fine focus, 2200 W, 60 kV, and an RTMS, X ‘Celerator detector. Data were extracted using the X’Pert Data Collector, version 2.1a, and processed in X’Pert HighScore version 2.1b, Both from PANalytical. The SEM was a Zeiss LEO 1430 with 500 DP XSD from IXRF-4 Systems Inc. ZWL also employed PANalytical X’PERT PRO with similar conditions and SEM LEO 1525.

The obtained concentrates (COB 1 and COB 2) do contain anatase as the main mineral, but still small amounts of quartz, zircon, and rutile (Figure 2). Anatase, as expected, shows crystals with typically sizes of <100nm. Some crystals between 100 and 200 nm show well developed crystal facets (Figure 3) exhibiting a prismatic to bipyramidal habit. The specific chemical analysis by SEM/EDX also confirmed the presence of TiO2 (anatase and rutile), zircon, and quartz (Figures 4) in the samples. The four distinct areal analyzes confirm the homogeneity of the material. The presence of Na depicts the use of sodium DCB for removing iron oxyhydroxides, where washing was not as complete, due to avoiding loss of material containing anatase.

Figure 2 – XRD of anatase concentrates COB 1 (above) and COB 2 (below) showing quartz, zircon, anatase and rutile

 

Figure 3 – Crystal morphology of prismatic to bipyramidal anatase in COB 1 (A and B images) and COB 2 (C and D images) after SEM analyzes by ZWL laboratories in Lauf, Germany.

 

Figure 4 – SEM and EDX of anatase concentrate showing the contents of Ti, beside Al and Fe for area indicated by red quadrangle (1). Three distinct points (2, 3 and 4) have been analyzed and presented the same area results.

 

Characterization of single particles by ADT and EDX measurements

For a more detailed measurement of the crystallographic properties of anatase and an unknown mineral detected in imaging mode due to differences in morphology automated electron diffraction tomography (ADT) experiments were performed. ADT methods aim for a complete sampling of the reciprocal space inside the tilt range of the TEM. In this way, single crystal diffraction data of nanometer sized crystals from mixed phases can be obtained particularly, Andrusenko et al. (2015). Even more, an ab-initio structure determination based on ADT data is possible, Mugnaioli et al. (2015).

To track the crystals for ADT measurements STEM imaging was facilitated and EDX measurements on single particles with a beam diameter of 1 nm were realized. A FEI TECNAI F30 ST transmission electron microscope operating at 300 kV (gun lens 8, spot size 2, 10 μm C2 aperture, exposure time of 120 s) was used. Therefore, the samples were deposited on carbon-coated copper grids. EDX measurements were carried out as drift corrected spectrum profiles in nanoprobe STEM (gun lens 1, spot size 7, 50 μm C2 aperture, and 10 s exposure time for each step of 10 steps). The spectra were collected up to 20 keV; and quantified by using FEI ES Vision software (FEI Deutschland, Frankfurt, Germany).

ADT data processing was done using the automatic module described in Kolb et al. (2007). Each ADT data collection was performed in tilt steps of 1°. Electron diffraction patterns were acquired in nano-beam electron diffraction (NED) mode, with a quasi-parallel illumination obtained using a condenser aperture (C2) of 10 μm. The beam on the sample had a diameter of 75 nm. Crystal position was tracked after each tilt step in μ-probe scanning transmission electron microscopy (μ-STEM) mode. Tomographic diffraction data sets were collected using electron beam precession, PED, for details see Vincent and Midgley (1994); Mugnaioli et al. (2009)] ADT data were analysed using the eADT software (Kolb et al. 2008, 2011; Mugnaioli et al. 2009), including three-dimensional diffraction reconstruction and visualization, cell determination based on clustering routines (Schlitt et al. 2012), and reflection intensity integration.

RESULTS AND DISCUSSION

In the lower magnified SEM images of the concentrate samples COB1 and COB2 (Figure 3) the majority of the particles show well-defined and equally distributed morphology. The higher magnification of the STEM reveals slight differences. While the majority of the particles are of tetrahedral morphology, a few particles were found with different morphology, see Figure 3 (A thru. D).

Analysis of tetrahedral crystals

ADT data sets were collected with tilt ranges of 81° for all three nm-sized crystals and reconstructed as three-dimensional reciprocal volume, respectively (Figures 7, 8).

Figure 5 – STEM μm images, with a) Anatase CRI, b) Anatase CRII and c) unknown phase CRIII (dark lines caused by EDX line scans performed after ADT measurement).

 

The determined crystal lattice constants from CRI and CRII (Figures 5 (a) and (b)) from these reconstructed reciprocal spaces (see Table 2) are, under consideration of the scale factor based on the effective camera length, in good agreement to reported anatase cell parameters (Burdett et al.).

Figure 6 – Example of the 3-dimensional reciprocal volume reconstructed from ADT data (CRI) viewed down [001] (left) and [010] (right); red lines indicate determined cell.

Table 2 – Lattice constants determined from ADT data of CRI and CRII in comparison to the literature values of anatase.

Lattice constants CRI CRII Literature Scale factor CRI/Literature Scale factor CRII/Lit
a / Å 3.65 3.68 3.78479 0.96 0.97
b / Å 3.68 3.71 3.78479 0.97 0.98
c / Å 9.17 9.29 9.51237 0.96 0.98
α / ° 89.1 90.5 90 0.99 1.01
β / ° 90.2 90.4 90 1.00 1.00
γ / ° 90.8 89.3 90 1.01 0.99

 

EDX measurements, as exemplarily shown in Figure 7 of the well-defined particles reveal Ti and O peaks. The average Ti:O ratio of the different EDX-measurements is ½, as expected from the chemical composition TiO2 of anatase.

Figure 7 – EDX spectrum of CRI. Peaks labelled in red. C originates from support film.

 

As visible in Figure 8 using a higher magnification of the small (100-200 nm) tetrahedral anatase crystals in STEM mode revealed smaller particles (<50 nm) attached to the particle surface. Some of them contain a high amount of Fe and Al. A line profile from anatase border over a small surface particle was measured exemplarily.

First, an increase in the measured fluorescence for all the selected energy windows (Ti, Fe, Al, and Cu) can be observed. After the probe has passed the surface particle, Fe and Al fluorescence’s decreases significantly in contrast to an increasing Ti signal.

Figure 8 – STEM image of anatase nano particle and line scan direction indicated in orange (left); EDX drift corrected spectrum profile showing relative intensities of Ti, Fe, Al.

 

The reconstructed reciprocal space of CRIII (Figure 9) could be indexed as rhombohedral (listed in Table 3). Considering the EDX results (Figure 10) and the lattice constants it was assumed that the crystal differing from the anatase habit could be goyazite. Thus, the intensities were extracted, and an ab-initio structure solution was performed by direct methods using SIR2014 (Burla et al. 2012).

Figure 9 – Three-dimensional reciprocal volume reconstructed from ADT data (CRIII). The detected cell (red lines) is of hexagonal or trigonal metric as seen from the views down [001] (left) and [010] (right).

 

Using the determined lattice parameters and taking the hexagonal lattice without any extinctions into account possible mineral structures were listed using Mineralogical Database. The three best agreements found for space group R-3m are compared in Tables 3 and 4 with our results.

 

Table 3 – Determination of lattice constants by ADT from CRIII in comparison with the lattices of crandallite, goyazite and gorceixite.

Lattice constants CRIII Literature Scale factor CRIII/Lit
a / Å 7.70 7.015 1.10
b / Å 7.80 7.015 1.11
c / Å 18.17 16.558 1.10
α / ° 90.8 90 0.99
β / ° 90.2 90 1.00
γ / ° 119.6 120 1.00

 

Table 4 – Lattice parameters of the minerals crandallite, goyazite and gorceixite

Mineral Composition Lattice parameter

a

Lattice parameter

c

Space group
Crandallite CaAl3(PO4)(PO3OH)(OH)6 7.005 16.192 R-3m
Goyazite SrAl3(PO4)(PO3OH)(OH)6 7.015 16.558 R-3m
Gorceixite BaAl3(PO4)(PO3OH)(OH)6 7.0538 17.2746 R-3m

 

These minerals show mainly a composition of AB3(XO4)2(OH)6, with many possibilities of replacements. The most common ones in these areas are crandallite (CaAl3(PO4)(PO3OH)(OH)6), goyazite (SrAl3(PO4)(PO3OH)(OH)6) and gorceixite (BaAl3(PO4)(PO3OH)(OH)6). A distinction between these minerals needs high sophisticated methods (Dill, 2001; Pöllmann.2010).

Particles with different morphology (CRIII) delivered a composition of oxygen, aluminium, strontium, and phosphorus, as shown in Figure 10 different to that of anatase. Thus, goyazite favoured by cell parameter and symmetry analysis could be confirmed by EDX measurements.

Figure 10 – EDX spectrum with the most intense fluorescence peaks labelled. The Si_K peak is caused by the EDX Si/Li-detector.

 

Finally, reflection intensities were extracted from ADT data of CRIII and used for ab initio structure solution in the space group R-3m using direct methods (Lit) converged to solution with a final residual of 0.143. The potential map (Figure 11) has one strong maximum (6.97 eÅ-3) corresponding to Sr atom. The next five maxima (from 2.03 to 1.43 eÅ-3) correspond to one phosphorus, one aluminum and three oxygen atoms. The completeness of the data set is 73% and Rsym is 0.135. In addition to the good correlation between atomic number of the elements and the found maxima sequence of the structure solution, the isotropic displacement factors are consistent (see Table 4).

Figure 11 – Potential map from structure solution of goyazite in three projections.

 

CONCLUSION

It is the first time that the common accessory mineral anatase in tropical soils and laterite-related was successfully extracted and characterized using different methods. It could be proven, that the nanoanatase crystals in the clay covers from bauxite mines are pure TiO2 with no foreign ion incorporations. No significant Al and Fe signals could be observed for the nanoparticles. Anatase is typically authigentic mineral. Additionally, a phosphate mineral from the crandallite series was found and its lattice was determined. It could be proven, that the main cation was strontium and therefore it is the mineral goyazite. Also, goyazite was firstly mentioned in this kind of material. To find these rare minerals an enrichment and concentration using chemical methods is useful. For the unambiguous characterization and screening of rare minerals in the concentrated samples ADT measurements, which need only short acquisition times in the range of minutes, are of high potential.

Acknowledgements

Thanks are due to CNPQ for financial support and scholarship (Grant 305015/2016-8 for ML Costa). We are grateful to the Stipendienstiftung Rheinland-Pfalz. We are also grateful to Dr. Glayce Jholy Valente and to the geologist Leonardo Boiadeiro Negrão for the improvement of some of the illustrations.

 

 

REFERENCES

Andrusenko, I., Krysiak, Y., Mugnaioli, E., Gorelik, T. E., Nihtianova, D.,  Kolb, U. 2015. Acta Cryst. B71, 349-357.

Bizzi L.A., Schobbenhaus C., Vidotti R.M., and Gonçalves J.H (eds.). 2003. Geologia,

tectônica e recursos minerais do Brasil: Texto, mapas and SIG: Brasília, Serviço Geológico do Brasil. Brasília, Companhia de Pesquisa de Recursos Minerais, 692 p.

Brown. S. & Clark. R.J.H. 2013. Anatase: important industrial white pigment and date-marker for artwork. /Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 110: 78-80.

Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. 2015. J. Appl. Cryst. 48, 306-309.

Cabral. A.R., Reith. F., Lehmann. B., Brugger. J., Meinhold. G., Tupinambá. M., Kwitko-Ribeiro, R. 2012. Anatase nanoparticles on supergene platinum-palladium aggregates from Brazil: Titanium mobility in natural waters. Chemical Geology. 334:182-188.

Cenovar, A., Paunovic, P., Grozdanov, A. Makreski, P., Fidanscevska, E. 2012. Preparation of nano-crystallie TiO2 by Sol-gel method using titanium tetraiosopropoxide (TTIP) as precursor. Advances in Natural Science: Theory & Applications. 1(2):133-142.

Costa, M. L., Cruz, G. S., Poellmann H. 2014. On the geology, mineralogy and geochemistry of the bauxite-bearing regolith in the lower Amazon basin: Evidence of genetic relationships. Journal of Geochemical Exploration, v. 146, p. 58-74.

Costa, M.L., Sabá Leite, A., Pöllmann, H. 2016.  A laterite-hosted APS deposit in the Amazon region, Brazil: The physical-chemical regime and environment of formation. . Journal of Geochemical Exploration 170, 107–124.

Dill, H. 2001. The geology of aluminum phosphate and sulphates of the alunite group minerals: A review, Earth Science Review 53(1) 35-93.

Fonseca, A.J., Pina, F., Macedo, M.F., Leal, N., Romanowska-Deskins, A., Laiz, L., Gómez-Bolea, A., Saiz-Jimenez, C. 2010. Anatase as an alternative application of preventing biodeterioration of mortars: Evaluation and comparison with other biocides. International Biodeterioration & Biodegradation. 64:388-396.

Hannoar, D.A.H., Sorrell, C.C. 2011. Review of the anatase to rutile phase transformation. J. Mater Sci. 46: 855-874.

Hoang, V.V., Ganguli, D. 2012. Amorphous nanoparticles – Experiments and computer simulations. Physiscs Reports. 518: 81-140.

Kolb, U., Gorelik, T., Kübel, C., Otten, M. T., Hubert, D.2007. Ultramicroscopy 2007, 107, 507–513.  

Kolb, U., Gorelik, T., Otten, M.T.2008.  Towards automated diffraction tomography. Part II—Cell parameter determination, Ultramicroscopy, Volume 108, Issue 8, July 2008, Pages 763-772, ISSN 0304-3991, http://dx.doi.org/10.1016/j.ultramic.2007.12.002.

Kolb, U., Mugnaioli, E. and Gorelik, T. E. 2011. Automated electron diffraction tomography – a new tool for nano crystal structure analysis. Cryst. Res. Technol., 46: 542–554. doi:10.1002/crat.201100036.

Matteucci, F. Cruciani. G. Dondi. M. Guarini. G. Raimondo. M. 2004. Colouring mechanisms in rutile-based ceramic pigments. Qualicer. 261-272.

Mugnaioli, E., Gorelik, T., Kolb, U. 2009. “Ab initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique, Ultramicroscopy, Volume 109, Issue 6, May 2009, Pages 758-765, ISSN 0304-3991, http://dx.doi.org/10.1016/j.ultramic.2009.01.011.

Mugnaioli, E.   Kolb, U. 2016. “Structure characterization of nanocrystalline porous materials by tomographic electron diffraction” Zeitschrift für Kristallographie – Crystalline Materials, 230.4 (2015): 271-288. Retrieved 22 Sep. 2016, from doi:10.1515/zkri-2014-1805.

Mugnaioli, E., Gorelik, T., Kolb, U. 2009. Ultramicroscopy 2009, 109, 758–765. http://www.nature.com/news/2010/100809/full/news.2010.396.html(Naturenews online)

Pöllmann, H. 2010. Mineralisation of wastes and industrial residues. (ISBN 978-3-8322-88365). Shaker Verlag Aachen (2010)

 

Pöllmann, H., Da Costa, M. L.; Angelica, R. 2002.  Florencite-La from the gold deposit Igarape Bahia/Carajas, Brazil. Aufschluss 53, 49-56.

 

Reddy, K.M., Manorama, S.V. Reddy, A.R. 2002. Bandgap on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics. 78:239-245.

Sayin, M., Jackson, M.L. 1975. Anatase and rutile determination in kaolinite deposits. Clays and Clay Minerals, 23: 437-443.

Schlitt, S., Gorelik, T. E., Stewart, A. A., Schomer, E., Raasch, T. & Kolb, U. 2012. Acta Cryst. A68, 536-546. Vincent, R. & Midgley, P.A., “Double conical beam-rocking system for measurement of integrated electron diffraction intensities”, Ultramicroscopy, Volume 53, Issue 3, 1994, Pages 271-282, ISSN 0304-3991, http://dx.doi.org/10.1016/0304-3991(94)90039-6.

 

 

 

APPENDIX – MESSAGES EXCHANGED BETWEEN MARCONDES LIMA DA COSTA AND HERBERT PÖLLMANN DURING THE PREPARATION, SUBMISSION AND REJECTION OF THE FINAL MANUSCRIPT Automated electron diffraction tomography on nanoanatase and goyazite from clay cover of bauxite deposits in the Amazon and published in full in this issue BOMGEAM 9 (2022) 1.

Text organized by Marcondes Lima da Costa from his email box (inboxes and sent from gmail)

16.10.2014

Marcondes Lima da Costa anatase pdf IMA 2014 2 mensagens Marcondes Lima da Costa 16 de outubro de 2014 09:23 Para: “Prof. Herbert Poellmann” Lieber Herbert, Anbei das gefragte pdf. mac anatase- Prof. Herbert Poellmann 16 de outubro de 2014 10:26 Para: Marcondes Lima da Costa Caro mac, optimo Herbert.

15.12.2015

Marcondes Lima da Costa anatase  15 de dezembro de 2015 12:36 Para: “Prof. Herbert Poellmann” Lieber Herbertão, Bald wird ich fertig mit dem Einführungstext für Anatas-Arbeit. Vergiss nicht die letzten Korrekturen von Leonardo Boiadeiro, die Termine wird bald auslaufen. ICH WÜNSCHE DIR, MARIELE UND PETER UND ALLE VERWANDTEN SCHOENEN WEIHNACHSTSFEIERN, …  ALLES GESUND UND MIT FRIEDEN. Mac.  Herbert Poellmann 15 de dezembro de 2015 14:03 Para: marcondeslc@gmail.com Lieber mac, die korrekturen habe ich heute zu ihm gesendet!!! Ich war schneller 2. Anatas ist wichtig, gut Du schon dabei bist. Und alles gute für Euch zu weihnachten und im Neuen Jahr und natürlich bis bald. Weiss Du wie die Arbeit über Anatas geheisst wird? …Mac Herbert Poellmann 15 de dezembro de 2015 15:39 Para: marcondeslc@gmail.com Lieber mac, habe diese mail nicht bekommen! grüße herbert .Marcondes Lima da Costa 15 de dezembro de 2015 16:25 Para: Herbert Poellmann 14/06/22, 19:01 Gmail – anatase  Herbert Poellmann 15 de dezembro de 2015 17:00 Para: marcondeslc@gmail.com caro marcondesao, see appendix herbertao Para: Herbert Poellmann Herbertão, Du bist wirklich gut. Für deine Verhältnisse passt schon!

19.01.2016 a 20.01.2016

Marcondes Lima da Costa anatase,  19 de janeiro de 2016 16:49 Para: “Prof. Herbert Poellmann” Lieber Herbertao, Beliegend findest Du einen vorläufigen Text über Anatas. Ich muss die Literatur noch richtig ausfüllen. Lasse ich deine Meinung wissen. Mac Anatase_Herbert_Juruti translation.docx 1603K Herbert Poellmann 19 de janeiro de 2016 17:19 Para: marcondeslc@gmail.com Lieeb mac, ist gut, aber folgendes: wir haben auch Daten zum Goyazit, den sollte man mit reinnehmen, da er mit im Konzentrat war. Titel: Automated electron diffraction tomography on anatase and gorceixite from bauxitic occurences in northern Brazil (working title) to be optimized Authors: Marcondes da Costa (Belem), Herbert Pöllmann(Halle), Jürgen Göske (Lauf). Yasar Krysniak, Ute Kolb (weitere?). Bin jetzt dann mit den leuten dabei das messprotokoll zu integrieren. wAs denkst Du. Grüße Herbert. Marcondes Lima da Costa 19 de janeiro de 2016 22:08 Para: Herbert Poellmann Herbert, Der Titel sieht ganz gut aus. Gorceixit ist leider mir nicht zu erwarten. In den Clay cover ist gorceixit nicht bekannt und phosphorgehalt zu nidrig. Kann sein, dass dieser Phosphat dem Chemieverfahren überleben hat und dann, wie Anatase, konzenetriet hat. Wie sieht so aus der Phosphat? Insgesamt kann es eine schöne Arbeit werden. Mac. Herbert Poellmann 20 de janeiro de 2016 05:42 14/06/22, 18:58 Gmail – anatase text Para: marcondeslc@gmail.com Liebr mac, Gorceixit ist da, wenn auch sehr wenig, mit den anderen Methoden aber natürlich nicht nachweisbar da sehr wenig da ist. Due to the high chemical resistance of gorceixite this mineral was rarely concentrated and also could be identified in the sample. Therefore it is the first proof of gorceixite in these clay covers. Herbert Marcondes Lima da Costa 20 de janeiro de 2016 10:38 Para: Herbert Poellmann Herbertão, All right. Let´s we go ahead. Mac.

06.07.2016

Marcondes Lima da Costa anatase manuskript 6 de julho de 2016 12:36 Para: “Prof. Herbert Poellmann” Lieber Herbert, Ich habe unser Manuskript Anatas noch mal durchgelesen und ein paar Korrekturen oder Anordnung gemacht. Die Beiträgen von Mainz ist sehr wertvoll, aber fehlt eine Dartstellung der Daten, und gleichzeitg eine sehr ausgeprägte Diskussion, meine ich, die leider kann ich nicht machen, da ich die entsprechendene Kentnisse nicht habe, da wäre für beiden Leuten and/or für Dich. Die Literatur muss also sowieso gereichert werden, da sicherlich die Hinweisen von Beiden Mainz Wissenschaflter fehlen. Wir müssen gleich unbedingt darüber reden. Mac Anatase_Herbert_Juruti translation_YK_02Corr MLC.docx.

08.07.2016

Marcondes Lima da Costa jetzt mit tabelle 2 mensagens Herbert Poellmann 8 de julho de 2016 06:02 Para: marcondeslc@gmail.com jetzt mit tabelle grüße h.p. Anatase_Herbert_Juruti translation_YK_02Corr MLCjuli2016.docx 3778K Marcondes Lima da Costa 8 de julho de 2016 08:04 Para: Herbert Poellmann und jetzt mit meinen neuen Korrekturen. Wir müssen eine Begrundung für Goyazit in der Einführung. Mac [Texto das mensagens anteriores oculto] Anatase_Herbert_Juruti translation_YK_02Corr MLCjuli2016.docx 3785K

22 a 28.09.2016

Marcondes Lima da Costa paper TiO2 3 mensagens Herbert Poellmann 22 de setembro de 2016 15:44 Para: marcondeslc@gmail.com Dear mac, schau das papaer an und mach Deine finalen Änderungen oder andere Kommentare, dann sollte es eigentlich fertig sein. Hast du idee wo wir das einreichen ?## Grüße herebertao Anatase_Herbert_Juruti translation_YK_04.docx 3597K Marcondes Lima da Costa 27 de setembro de 2016 18:21 Para: Herbert Poellmann Lieber Herbertão, Bin ich gerade in Rio Branco aus Feijó angekommen. Morgen werde ich nach Belém fliegen, dann mache ich meine Teile fertig. Es gab so viele Ananas, ganz süss, Bananas, Caju (Erinernst Du von Varig-Saft,Caju-Saft?). Ich habe oft an Dir gedacht. Schönen Grüssen, Mac [Texto das mensagens anteriores oculto] Herbert Poellmann 28 de setembro de 2016 03:47 Para: marcondeslc@gmail.com Hallo mac, der Artikel mit wavellite ist auch schon “fast” fertig denkst du noch an probensenden

12 a 20,12,2016

Marcondes Lima da Costa ENC: Wtrlt: Anatase 05 8 mensagens marcondes lima da costa 12 de dezembro de 2016 14:05 Para: “Prof. Marcondes” De: Herbert Poellmann [mailto:herbert.poellmann@geo.uni-halle.de] Enviada em: sábado, 10 de dezembro de 2016 17:52 Para: mlc@ufpa.br Assunto: Wtrlt: Anatase 05 Hallo Mac, schau bitte auch noch mal drüber dann könnten wir den anats einreichen Grüße Herbert >>> “Krysiak, Yasar” 09.12.16 12.26 Uhr >>> Hallo, ich habe die Literatur in die Liste eingefügt. Viele Grüße, Yasar Krysiak From: Herbert Poellmann [mailto:herbert.poellmann@geo.uni-halle.de] Sent: Tuesday, December 6, 2016 4:34 PM To: Krysiak, Yasar Subject: Antw: FW: Anatase die Vierte Hallo herr Krysiak, das meinte ich auch, da fehlen im verzeichnis noch angaben der literatur, bspweise Kolb,U.: usw 14/06/22, 18:50 Gmail – ENC: Wtrlt: Anatase 05 Grüße Herbert Poellmann >>> “Krysiak, Yasar” 06.12.16 15.20 Uhr >>> From: Krysiak, Yasar Sent: Thursday, September 22, 2016 8:31 PM To: ‘Herbert Poellmann’ Subject: Anatase die Vierte Hallo Herr Pöllmann, ich habe zwei Bilder in der Worddatei nochmal angepasst und die Literatur eingefügt und für diese eine Nummerierung zur Orientierung gestartet. Die Literatur ist auch nochmal getrennt in einer anderen Worddatei angehängt. Die aktuellen Abbildungen habe ich auch nochmal angehängt. Viele Grüße, Yasar Krysiak — Yaşar Krysiak Institute of Inorganic Chemistry and Analytical Chemistry Johannes Gutenberg University Mainz Jakob-Welder-Weg 11 55128 Mainz Tel: +49 6131 39 23148 Mobile: +49 176 56747972 krysiak@uni-mainz.de Anatase_Herbert_Juruti translation_YK_05.docx 3598K marcondes lima da costa 12 de dezembro de 2016 14:57 Para: “Prof. Marcondes” 14/06/22, 18:50 Gmail – ENC: Wtrlt: Anatase [Texto das mensagens anteriores oculto] Anatase_Herbert_Juruti translation_YK_05.docx 3598K marcondes lima da costa 12 de dezembro de 2016 14:59 Para: “Prof. Marcondes” [Texto das mensagens anteriores oculto] Anatase_Herbert_Juruti translation_YK_05.docx 3598K marcondes lima da costa 12 de dezembro de 2016 16:33 Para: Herbert Poellmann Cc: “Prof. Marcondes” Lieber Herbert, Ich habe durchgelesen, ein paar Probleme korrigiert und wiederlos zu Dir. Die Literatur habe ich für Abb. 1 etwas ergänzert. Mir geht es etwa besser. Mac [Texto das mensagens anteriores oculto] Anatase_Herbert_Juruti translation_YK_05.docx 3623K marcondes lima da costa 13 de dezembro de 2016 16:35 Para: “Prof. Marcondes” De: Herbert Poellmann [mailto:herbert.poellmann@geo.uni-halle.de] Enviada em: segunda-feira, 12 de dezembro de 2016 21:15 Para: mlc@ufpa.br Assunto: Antw: RES: Wtrlt: Anatase 05 Hi Mac, hoffe alles ist gut bei Dir. Kannst di 2 sätze zu crandallit in bauxiten schreiben ich arebite dann noch etwas mit dazu, ansosnten ist der artikel schon schön Grüße Herbert >>> “marcondes lima da costa” 12.12.16 19.34 Uhr >>> [Texto das mensagens anteriores oculto] 14/06/22, 18:50 Gmail – ENC: Wtrlt: Anatase 05 Marcondes Lima da Costa 13 de dezembro de 2016 17:13 Para: “Prof. Herbert Poellmann” Lieber Herbertão, Wenn es dir passt, sieh was ich geschrieben haben uber goayzite. Mac. Whereas the solid solution crandallite-goyazite can be found in soils and lateritic profiles, the single member goyazite isn´t. Crandallite-goyazite occurs as main mineral or associated with supergeneous minerals as gibbsite, hematite, goethite and kaolinite in several lateritic deposits in Senegal and in the Amazon region, where they form ore deposits and are already mined (Costa et al.,2016). Alone goayzite member in the present paper support its formation also in these kinds of lateritic deposits Reference: Marcondes Lima da Costa, Alessandro Sabá Leite, Herbert Pöllmann. 2016. A laterite-hosted APS deposit in the Amazon region, Brazil: The physical-chemical regime and environment of formation. . Journal of Geochemical Exploration 170 (2016) 107–124 [Texto das mensagens anteriores oculto] Herbert Poellmann 13 de dezembro de 2016 19:29 Para: marcondeslc@gmail.com Hi Mac, das ist gut werde ich noch einfügeb grüße Herbert >>> Marcondes Lima da Costa 13.12.16 20.21 Uhr >>> [Texto das mensagens anteriores oculto] Herbert Poellmann 13 de dezembro de 2016 20:56 Para: marcondeslc@gmail.com Lieber mac, vielen dank für Deine Zuarbeit zum anatas. ich habe aber noch etwas, denkst du noch an die geologie von tres ilhotas – nächstes jahr gibt es ein weiteres brasilienheft, da sollte das mit rein. mache gerade farbaufnahmen vom Linarit – schön blau !! grüße Herbertao

14.12.2016

Marcondes Lima da Costa ENC: Antw: FW: Anatas 5 mensagens marcondes lima da costa 14 de dezembro de 2016 08:56 Para: “Prof. Marcondes” De: Herbert Poellmann [mailto:herbert.poellmann@geo.uni-halle.de] Enviada em: terça-feira, 13 de dezembro de 2016 21:40 Para: krysiak@uni-mainz.de Cc: mlc@ufpa.br Assunto: Antw: FW: Anatas Dear all, please have a look on this version which probably can be the last before we send it to a journal ? any proposals for a journal ? regards Herbert >>> Herbert Poellmann 06.12.16 16.33 Uhr >>> Hallo herr Krysiak, das meinte ich auch, da fehlen im verzeichnis noch angaben der literatur, bspweise Kolb,U.: usw Grüße Herbert Poellmann >>> “Krysiak, Yasar” 06.12.16 15.20 Uhr >>> From: Krysiak, Yasar Sent: Thursday, September 22, 2016 8:31 PM To: ‘Herbert Poellmann’ Subject: Anatase die Vierte 14/06/22, 19:46 Gmail – ENC: Antw: FW: Anatas Hallo Herr Pöllmann, ich habe zwei Bilder in der Worddatei nochmal angepasst und die Literatur eingefügt und für diese eine Nummerierung zur Orientierung gestartet. Die Literatur ist auch nochmal getrennt in einer anderen Worddatei angehängt. Die aktuellen Abbildungen habe ich auch nochmal angehängt. Viele Grüße, Yasar Krysiak ————————————- Yaşar Krysiak Institute of Inorganic Chemistry and Analytical Chemistry Johannes Gutenberg University Mainz Jakob-Welder-Weg 11 55128 Mainz Tel: +49 6131 39 23148 Mobile: +49 176 56747972 krysiak@uni-mainz.de Anatase_Herbert_Juruti translation_YK_05aftermac.docx 3601K Marcondes Lima da Costa 14 de dezembro de 2016 09:28 Para: “Prof. Herbert Poellmann” Lieber Herbertão, Ich bin der Meinung dass ich nicht der erste Author sein darf, da meine Beitragung ist gering. Lass die AuthorenReihung besser einordnen, meinest Du nicht? Mac [Texto das mensagens anteriores oculto] Anatase_Herbert_Juruti translation_YK_05aftermac.docx 3601K Herbert Poellmann 14 de dezembro de 2016 12:08 Para: marcondeslc@gmail.com hi mac, nehmen wir den krysiak nach vorne ? grüße 14/06/22, 19:46 Gmail – ENC: Antw: FW: Anatas  Herebrtao >>> Marcondes Lima da Costa 14.12.16 12.28 Uhr >>> [Texto das mensagens anteriores oculto] Marcondes Lima da Costa 14 de dezembro de 2016 12:15 Para: Herbert Poellmann Herbertão, Ganz genau. Mac [Texto das mensagens anteriores oculto]

24.07.2017

Marcondes Lima da Costa manuskript Anatas 1 mensagem Marcondes Lima da Costa 24 de julho de 2017 15:06 Para: “Prof. Herbert Poellmann” Herbertão, Weiss Du auch Bescheid von Anatas. Es konnte auch sehr interessante Arbeit sein! Bleibe gesund und felissig, Mac

5 a 6.09.2017

Marcondes Lima da Costa Anatase 5 mensagens Marcondes Lima da Costa 5 de setembro de 2017 10:14 Para: “Prof. Herbert Poellmann” Lieber Herbertao, Has Du irgende eine Nachrichte über die Anatas-Arbeit? Abraços, Marcondes Herbert Poellmann 5 de setembro de 2017 11:54 Para: marcondeslc@gmail.com Hallo Mac, habe schon nach Mainz geschrieben aber noch keine Antwort Werrde nochmal nachhaken grüße Herbert [Texto das mensagens anteriores oculto] September/2017Herbert Poellmann 6 de setembro de 2017 03:57 Para: marcondeslc@gmail.com Hallo Mac, werde mit ute kolb in Mainhz nächste woche telefonieren wegen dem manuskript grüße herbertao [

8 a 12.09.2017

Herbert Poellmann 12 de setembro de 2017 06:35 Para: marcondeslc@gmail.com 14/06/22, 19:42 Gmail – Hi Mac, habe gerade mit Ute kolb telfoniert. Sie macht sich in den nächsten wochenan den anatas artikel grüße herbert [Texto das mensagens anteriores oculto] Marcondes Lima da Costa 12 de setembro de 2017 08:10 Para: Herbert Poellmann herbertao, das ist gut. ich bin im barro alto, bauxit mine. Marcondes

1 a 8.11.2017

Marcondes Lima da Costa Anatase, Wavellite, Belterra Clay-Cement 3 mensagens Marcondes Lima da Costa 1 de novembro de 2017 09:18 Para: “Prof. Herbert Poellmann” Lieber Herbertão, Ich bin wieder mit neuen Nachrichten. Zur erst habe ich eigentlich die Anatas-Arbeit was mir zu treffen seien, fertig gemacht. Biette sieht sie beiliegend. Versuche einmal dass diese etwas läuft Mac Anatase_Herbert_Juruti translation_YK_05aftermac_YK_UK (1).DOCX 5306K Marcondes Lima da Costa 8 de novembro de 2017 19:07 Para: “Prof. Herbert Poellmann” Lieber Herbertão, Entschuldige mich, aber hast Du die neue Antas-Version von mir erreichen, die ich Dir durch letztes email gesenden habe. Ich würde dass diese Arbeit fertig wird und zur einer Zeitschrift gesendt wird, wäre es nicht richtig? Das ist genau mit Wawellit! Mac Herbert Poellmann 9 de novembro de 2017 15:10 Para: marcondeslc@gmail.com Hallo Mac Den anta habe ich erhalten ich Werde ihn noch lesen und dann nach Mont senden Grüße Herbertao.

7.12.2017

Marcondes Lima da Costa anatase in diaspor bauxite 2 mensagens Marcondes Lima da Costa 7 de dezembro de 2017 11:06 Para: “Prof. Herbert Poellmann” Lieber Herbert, Unsere Anatas-Arbeit kann bald überholt werden. Siehe die beiliegende Arbeit. Mac Nano-mineralogy and -geochemistry of high-grade diasporic karst-type bauxite from Parnassos-Ghiona mines, Greece.pdf 5071K Herbert Poellmann 7 de dezembro de 2017 11:57 Para: marcondeslc@gmail.com Hall O mac, ich weiss, ich habe überarbeitet und werde s noch dies woche nach Mainz sedne grüße herbert

8.05.2018

Marcondes Lima da Costa Manuskript Anatase 3 mensagens Marcondes Lima da Costa 8 de maio de 2018 09:55 Para: “Prof. Herbert Poellmann” Lieber Herbertão Entschudige mich aber darf ich mal fragen, wie geht die Anatas – Arbeit weiter? Ist sie schon weitergehen vorgelegt? Mac Anatase_Herbert_Juruti translation_YK_05aftermac_YK_UK (1).DOCX 5306K Herbert Poellmann 8 de maio de 2018 10:06 Para: marcondeslc@gmail.com Hallao, liegt schoin lange in mainz, ich schreib mal wieder Grüße Herbert [Texto das mensagens anteriores oculto] Marcondes Lima da Costa 8 de maio de 2018 10:15 Para: Herbert Poellmann Herbertão, Dank! entschuldige-mich, bitte. Marcondes

Marcondes Lima da Costa Wtrlt: RE: Anatas 1 mensagem Herbert Poellmann 8 de maio de 2018 12:46 Para: marcondeslc@gmail.com >>> “Krysiak, Yasar” schrieb am 08.05.2018 um 16:08: Hallo Herr Pöllmann, gut dass sie sich melden, auch wenn es nicht so aussieht, denke ich fast jeden Tag daran Anatas endlich einreichen zu können. … Welche Fachzeitschrift sollte es Ihrer Meinung nach nochmal werden? Viele Grüße, Yasar Krysiak From: Herbert Poellmann [mailto:herbert.poellmann@geo.uni-halle.de] Sent: Tuesday, May 8, 2018 3:11 PM To: Krysiak, Yasar Subject: Anatas Hallo Herr Krysiak, Hoffe alles ist gut. Wie schaut es denn mit der Anatas Arbeit aus Grüße Herbert Pöllmann.

13.07.2018

Marcondes Lima da Costa Fwd: Pontes e lacerda 2 mensagens mlc 12 de julho de 2018 14:17 Para: Marcondeslc ——– Mensagem original ——– Assunto:Pontes e lacerda Data:2018-07-11 07:51 De:”Herbert Poellmann” Para: Hi Mac, hoffe alles ok. Der ian hat gerade das englisch überprüft von dem artikel über anatas hats du information über pontes e lacerda Mato grossso herbertao Marcondes Lima da Costa 13 de julho de 2018 09:43 Para: mlc Herbertão, Das ist sehr gut mit der Anatas-Arbeit.

14.01 a 11.06.2019

Marcondes Lima da Costa Fwd: Artikel 5 mensagens mlc 14 de janeiro de 2019 16:23 Para: Marcondeslc – Assunto:Artikel Data:2019-01-10 15:49 De:”Herbert Poellmann” Para:, Hallo, Artikel in der Zeitschrift Mineralogy and Petrology mit den Kommentaren wude nicht angenommen. Nachstehend folgende Kommentare. Grüße Herbert Dear Prof.Dr. Poellmann, I have received the decision from the Editor on your manuscript, MIPE-D-18-00151 “Automated electron diffraction tomography on nanosized anatase and goyazite from clay cover of bauxite deposits in the Amazon” With regret, I must inform you that the Editor has decided that your manuscript cannot be accepted for publication in Mineralogy and Petrology. The Editorial Manager is at: https://mipe.editorialmanager.com/ Marcondes Lima da Costa 14 de janeiro de 2019 16:25 Para: “Prof. Herbert Poellmann” Das ist wirklich schade. Hast Du einen neuen Vorschlag? Wie können wir diese verbessern? Mac [Texto das mensagens anteriores oculto] 14/06/22, 19:33 Gmail – Fwd: Artikel Herbert Poellmann 15 de janeiro de 2019 06:24 Para: marcondeslc@gmail.com Hallo Mac, wichtig ist, dass die Besonderheit des Anatas im Bauxit beschrieben wird. Da muss noch mehr Geologie Mineralogie rein. Ich habe mit Ute gesprochen im Titel nehmen wir die Methodik raus und dann heisst es nur noch Anaats und Goyazit im bauxit …. Grüße herbert  Marcondes Lima da Costa 15 de janeiro de 2019 10:08 Para: Herbert Poellmann Herbertão, Da ist denn eine gute Idee. Lass ich sehen, was Ihr gemacht habe, damit ich mehr Geologie eingeben. Mac Marcondes Lima da Costa 11 de junho de 2019 23:07 Para: Herbert Poellmann Lieber, Wie machen wir weiter diese Arbeit, sollen wir einfachen los lasssen? Wäre es schade. Ich habe heute erfahren anderen Leuten weiter auf diese Richtung arbeiten. Mac

26.11.2019 (Last message on this thema anatase manuscript)

Herbert Poellmann 26 de novembro de 2019 13:55 Para: marcondeslc@gmail.com Hallo Mac, … Ich werde nochmal auch mit anatas versuchen grüße herbert >>> Marcondes Lima da Costa 26.11.19 15.53 Uhr >>> 14/06/22, 19:31 Gmail – manuskripts Anatas und Wavellit Marcondes Lima da Costa 26 de novembro de 2019 14:59 Para: Herbert Poellmann Lieber Herbertão, Einverstanden. Es wäre schön wenn wir die beiden Arbeiten fertig machen können, aber zumindesten die von Anatas. Bald wird schon was von Anderen Leuten eine Anatas-Arbeit von Böden veröffentlichen. Mac.

 

 

 10.31419/ISSN.2594-942X.v92022i1a2HMP